Factores primos conocidos de gúgolduplex - 1 con 153 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 153 digitos

Esta es una lista de factores primos conocidos de 153 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 102 6341648675 4031281179 6600338616 9041465035 6019603387 0001738399 6989593078 1390580577 2947132936 6788268089 2944335937 5000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 104 8576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 122 1244691174 8192486079 7523251350 5278139956 8695204278 2385365420 6333458789 1712000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  4. 127 8668206209 4304179739 0222532328 0918834625 7992355721 8339191069 0662552264 2205759980 0127737981 4806311387 0651109873 2815273797 5490838236 4816614564 5608960001 (Phil Carmody, k=1)
  5. 136 7031702989 3824527328 1389194851 3353345730 8943082577 7276610662 9006220624 4996099520 1469573563 9408640000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 139 2731947538 9197944760 6577827420 0986072710 1142404576 5754880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
  7. 150 5776993706 4521149696 3505287221 2336649245 4365978600 7647023502 0162758656 7850584932 1076734033 9200000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=231)
  8. 167 5339061381 8245120000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  9. 167 9808556633 3531579180 8171042633 3208591234 1229259871 5117499182 5722843903 3851207090 3565811995 3705336832 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 198 3586119818 2389191521 7041714241 4601688142 8787798720 2367598092 0964216503 3487784718 7738241237 1321215405 0331004206 9529117725 3238856792 4499511718 7500000001 (Phil Carmody, k=51)
  11. 216 6395068749 4154810734 6739200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  12. 222 0446049250 3130808472 6333618164 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 252 5469559893 4477921953 0047887057 4578635128 8907677813 7762735613 2660575570 7667710476 2880000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  14. 309 6964213398 5356147185 5414310994 0923750400 5432128906 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
  15. 412 5976562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=169)
  16. 417 6194859519 0556970945 8822992419 0435648745 1251641385 9056552733 1500622876 5423911854 2265352118 6475700233 1316471099 8535156250 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  17. 432 9327034368 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
  18. 445 1823720247 3133731028 3105309918 7004401562 3034249717 3754285213 5379663986 3941890036 6054865358 4783096448 5183358192 4438476562 5000000000 0000000000 0000000001 (Phil Carmody, k=533)
  19. 452 9953002929 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  20. 501 3646698088 0496596909 2172810442 7319869273 3406023136 4614029312 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  21. 528 9050460814 0026393395 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  22. 603 9797760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  23. 645 5624695217 2714741397 9793000752 9685824264 4820730587 8207664839 1351619055 0421029865 7411338320 0344578589 7579299318 6873344000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  24. 684 5313241232 4387680821 9730903040 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  25. 763 5196439527 3713178946 2180777850 5510018074 0882374480 8273769358 5419386888 7793960442 8093538057 8711539989 6784988890 1978841415 6800000000 0000000000 0000000001 (Phil Carmody, k=231)