Factores primos conocidos de gúgolduplex - 1 con 140 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 140 digitos

Esta es una lista de factores primos conocidos de 140 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1059246632 3575406592 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
  2. 1436714569 5617708047 1095033795 3414859642 5679270471 2704000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 1453114567 2687616000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=413)
  4. 1717986918 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 1735533194 3304472153 6687573885 0586085841 4198947840 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  6. 1905728086 8633962799 0054566888 5847523928 6751129392 8087811522 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=759)
  7. 1968499104 2172630875 3890356311 7924188089 6986673839 2122324418 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
  8. 2384185791 0156250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 2610121787 1994098106 8411764370 2619022280 4657032275 8661910345 4582187889 2978389944 9088915845 0741547312 6457072794 4374084472 6562500000 0000000001 (Phil Carmody, k=1)
  10. 2984279490 1924207806 5872192382 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  11. 3284293275 7612900099 7749121083 5740932688 1139262730 8384005562 8790366697 8500449857 8473430825 3973722457 8857421875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 3330669073 8754696212 7089500427 2460937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  13. 3395799677 9435742561 0830030836 5743848046 3808261333 7246584706 0084342956 5429687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=551)
  14. 3452483940 4041327301 0928808746 8021538179 7964632647 6078633707 8446108036 6185386401 3579940749 0890376936 4136219776 2976434518 4289357735 9196160001 (Phil Carmody, k=19)
  15. 3921792002 3444924205 3992724247 9574284138 2406728593 8321011156 3897746108 5759380775 6434377388 0294209331 4932779424 3361025556 4800000000 0000000001 (Phil Carmody, k=243)
  16. 4096000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  17. 4563542160 8216258453 8813153935 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  18. 5200010849 8455368032 5114044497 9303760052 8744501815 4812714783 4748029708 8623046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  19. 5905713432 3662163755 9516419674 3497476192 9167907185 0414460550 9725606269 0270238338 3445504000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  20. 6525304467 9985245267 1029410925 6547555701 1642580689 6654775863 6455469723 2445974862 2722289612 6853868281 6142681986 0935211181 6406250000 0000000001 (Phil Carmody, k=1)
  21. 6784692728 7489958255 9986240285 2807100777 5381640023 7679918696 7812963659 9398400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  22. 6883551971 2294953827 1833167027 2970681825 1219958759 3177814964 5806458325 2881602673 9753493641 2979200000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  23. 7114265962 7407070468 2420131893 3785058504 9078578569 5625458427 3961446182 6850776678 4000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  24. 7855183955 3132033757 5994943436 4630848180 6968209599 9144772217 1773070427 0923656839 0749154812 0573856782 1512093561 4756683776 0000000000 0000000001 (Phil Carmody, k=623)
  25. 8854437155 3805847756 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  26. 9619630419 0416209014 3531252444 9124464130 7957203284 7819041706 3819395928 1668694361 8442731109 7384012607 6188056616 9600000000 0000000000 0000000001 (Phil Carmody, k=1)