Factores primos conocidos de gúgolduplex - 1 con 133 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 133 digitos
Esta es una lista de factores primos conocidos de
133 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 118 2060185891 8343763683 7120300430 8414152392 1781139634 0003844880 2127371653 1449163183 4242798764 6547469224 1988397092 0448000000 0000000001 (Phil Carmody, k=3)
- 148 4506766469 6643298265 9190985586 4568922014 8687106898 8961508979 3619362038 1459281166 9320886885 9255034067 2460151836 2760543823 2421875001 (Phil Carmody, k=91)
- 183 6709923159 8242312011 5083940975 8871591664 9324563867 5235742454 1060026967 8980112075 8056640625 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 242 8889274597 1679687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=163)
- 305 3220032536 7826998319 0531687090 3239935427 1418302742 4597566514 2433841078 7927954007 4321219882 7854820225 8432000000 0000000000 0000000001 (Phil Carmody, k=213)
- 314 5728000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 328 8378683994 5315659582 9087361163 6794225848 2216960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 361 1118645726 0672244799 5864234673 8722258940 5904038528 6607488524 1687297821 0449218750 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 442 9285074274 6622816963 7314755762 3107144687 5930388781 0845413229 4204701770 2678753758 4128000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
- 463 1683569492 6478169428 3940034751 6314130799 3866256225 6157830336 0316525185 5974400000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 476 4560328305 4394072593 1406632298 6036539077 7587890625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 497 3232364097 8664215538 2248146820 8401004561 5079734771 7440463976 8931594970 1253337553 3056000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 710 1996468378 1773721600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 928 4550294640 3520617434 3168000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 973 5556609752 8018034946 8061728768 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)