Known 84-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 84-digit prime factors of googolduplex − 1
This is a list of known
84-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1007 4748285295 6226259564 4202424830 4597844280 4883647753 9319808000 0000000000 0000000001 (Phil Carmody, k=321)
- 1045 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=209)
- 1073 7418240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1115 7989501953 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
- 1195 5344790805 4781133758 2875257368 1867943378 1653642654 4189453125 0000000000 0000000001 (Phil Carmody, k=37)
- 1579 6843750283 5780046877 0415255056 4847834264 3100823666 8814664663 0400000000 0000000001 (Phil Carmody, k=3)
- 1766 2190197236 2535280962 8887193750 2312736489 4720000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
- 1888 9465931478 5808547840 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1976 9892864000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2413317)
- 1988 5858297705 0046598317 8089272188 7206212262 0480620613 3685452800 0000000000 0000000001 (Phil Carmody, k=99)
- 2005 7740190981 8320291378 7681609392 1661376953 1250000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
- 2020 3181441137 4060863537 0733568000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 2021 4843750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
- 2055 2089600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 2555 5891625117 5105571746 8261718750 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=28099)
- 2768 0982506161 9108055310 7894957065 5822753906 2500000000 0000000000 0000000000 0000000001 (Dario Alpern, k=15957)
- 2826 9553036454 1492733327 6001188669 6253239742 3500099033 2994569922 0681916416 0000000001 (Phil Carmody, k=1)
- 3019 3871749120 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=359939)
- 3036 0231875466 0941658460 4176875520 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=479)
- 3171 2208389884 6745775514 8832436800 6432862898 6913827247 9176521301 2695312500 0000000001 (Phil Carmody, k=201)
- 3706 9926667332 1297176671 4574465199 2176251073 5809932871 6151746409 2672000000 0000000001 (Phil Carmody, k=11)
- 3831 2388521647 2214589586 7567875772 9590468478 0545900544 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3863 4928589686 9787393370 6432580947 8759765625 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=139197)
- 3916 8243880468 1982078587 5351679638 4926778992 1517568000 0000000000 0000000000 0000000001 (Phil Carmody, k=67)
- 4456 1251390240 4749899233 1384215503 9310455322 2656250000 0000000000 0000000000 0000000001 (Dario Alpern, k=82201)
- 6097 8600152232 1726526367 2965177286 3492915200 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 6380 2943797675 9618993827 3889345653 9648000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 7065 6628225268 3967738633 1314006104 8069468228 1025943323 5847634174 1145292800 0000000001 (Phil Carmody, k=819)
- 8800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 9657 4837016305 5369630455 9707641601 5625000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=135917)
- 9932 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)