Known 81-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 81-digit prime factors of googolduplex − 1

This is a list of known 81-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1 0901657789 3990400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1983)
  2. 1 1010048000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  3. 1 1676942336 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
  4. 1 4585690112 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=7121919)
  5. 1 4763946087 8497855959 9975790617 1545585038 9844272285 6998443603 5156250000 0000000001 (Dario Alpern, k=228461)
  6. 1 6952901218 1517915909 5454686223 5474691260 6060504913 3300781250 0000000000 0000000001 (Dario Alpern, k=51237)
  7. 1 8276884942 0425932524 2734707885 4737920000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  8. 2 0679515313 8256918717 8521730174 9071339145 3027725219 7265625000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 2 2137695312 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=22669)
  10. 2 6149336558 7200880778 3280301099 5194034246 7616737591 6058019977 1779130772 6848000001 (Phil Carmody, k=37)
  11. +269409792871731627664586194662281233853701011108906726055753272681082282441709251 () (k=1077639171486926510658344778649124935414804044435626904223013090724329129766837)
  12. 3 1129600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  13. 4 5438388140 7302799917 1556536028 8486829176 6906622797 2507476806 6406250000 0000000001 (Phil Carmody, k=9)
  14. 4 9692573696 8920592695 3024220839 4583257647 9845996267 8319717017 4411354931 2000000001 (Phil Carmody, k=9)
  15. 5 0549900000 9074496150 0065328816 1807513069 6457922635 7340206926 9217280000 0000000001 (Phil Carmody, k=3)
  16. 5 6115932755 5973974632 7636567002 6279985904 6936035156 2500000000 0000000000 0000000001 (Phil Carmody, k=53)
  17. 7 0244482230 9189476072 7882385253 9062500000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=617877)
  18. 7 7371252455 3362671811 9526400000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)