Known 75-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 75-digit prime factors of googolduplex − 1
This is a list of known
75-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10325 1887065839 2618318936 3095425208 1246312548 3571201966 0800000000 0000000001 (Phil Carmody, k=539)
- 12087 7530207508 2436203956 6040039062 5000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4253)
- 12159 7189939003 3920000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 12676 5060022822 9401496703 2053760000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 13913 8714113674 8994973970 6389664206 6538333892 8222656250 0000000000 0000000001 (Dario Alpern, k=82133)
- 17804 8735303896 1225300493 9983140081 6359460091 7111334461 5139246080 0000000001 (Phil Carmody, k=277)
- 19200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28640 3015290360 3021474765 4554230393 8418626785 2783203125 0000000000 0000000001 (Phil Carmody, k=541)
- 29258 0044151193 6000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2661)
- 35969 3684154826 7520000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=654279)
- 37634 8258113168 2991326670 1623797416 6870117187 5000000000 0000000000 0000000001 (Dario Alpern, k=4339)
- 42325 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1693)
- 44549 9070462288 2105279165 8504708423 6800000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
- 46756 2186884373 7871657140 2037516236 3052368164 0625000000 0000000000 0000000001 (Phil Carmody, k=69)
- 50883 6410053127 1600017949 1135850109 6123409474 1625241600 0000000000 0000000001 (Phil Carmody, k=17)
- 51318 9010426410 0846627717 1200000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=849)
- 53782 4630737304 6875000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=11279)
- 62172 4893790087 6626372337 3413085937 5000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 69540 6924933195 1141357421 8750000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=11947)
- 74614 7020800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=113853)
- 87241 5232000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 91343 8523331814 3238773030 2044767688 7284957839 3600000000 0000000000 0000000001 (Phil Carmody, k=1)
- 94156 5260308002 1145753684 1348114996 2415353316 6696051769 3440000000 0000000001 (Phil Carmody, k=3)