Known 65-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 65-digit prime factors of googolduplex − 1
This is a list of known
65-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10955 4865179717 3533850582 3165178298 9501953125 0000000000 0000000001 (Dario Alpern, k=394713)
- 11222 5199114445 3898240000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=24919)
- 11352 7243161826 1634866939 8576021194 4580078125 0000000000 0000000001 (Dario Alpern, k=16361)
- 11529 2150460684 6976000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 12407 7091882954 1512307113 0381049442 8034871816 6351318359 3750000001 (Phil Carmody, k=3)
- 12657 6306355154 4524800000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=719503)
- 13738 1153909104 8743111463 7427533060 3847657659 0397440000 0000000001 (Phil Carmody, k=47)
- 14167 0994486089 3564108800 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 14179 5703125000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=362997)
- 15016 6900075134 9760000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1067)
- 15065 0441649280 3383320589 4615698399 3986456530 6671368283 0950400001 (Phil Carmody, k=3)
- 18310 5468750000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 18343 3463418318 3904607253 7431868755 1488000000 0000000000 0000000001 (Phil Carmody, k=69)
- 18859 7179662090 3098706811 8179195153 0613005161 2854003906 2500000001 (Phil Carmody, k=57)
- 19305 8520284862 9518830339 5166249012 1764470065 1969576960 0000000001 (Phil Carmody, k=129)
- 20180 6640625000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4133)
- 20964 5389990453 5958234218 7331416229 6319043511 9147167776 7680000001 (Phil Carmody, k=171)
- 21896 3623046875 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=287)
- 22123 3424989477 1389712302 0800000000 0000000000 0000000000 0000000001 (Phil Carmody, k=183)
- 26102 8634402393 9481600000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1449)
- 29664 8237173964 8000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1349)
- 30502 8425679917 6997351442 0879360000 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 34662 3210999906 4769717547 8272000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 35324 3803944725 0705619257 7743875004 6254729789 4400000000 0000000001 (Phil Carmody, k=99)
- 37451 5617628488 8949190587 9367550369 3521022796 6308593750 0000000001 (Dario Alpern, k=8843)
- 41904 1749455516 4847073605 1523641266 7395748978 7220787200 0000000001 (Phil Carmody, k=7)
- 41943 0400000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 43698 0374568960 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1302303)
- 47022 9324228688 1280733723 5426530241 9662475585 9375000000 0000000001 (Dario Alpern, k=43371)
- 48704 4453620910 6445312500 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6537)
- 48721 0750579833 9843750000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=204351)
- 52538 8935941883 9841175431 7707256234 3710160348 5643863677 9785156251 (Phil Carmody, k=813)
- 54931 6406250000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 55751 8629963265 5785383929 5681620903 7649510400 0000000000 0000000001 (Phil Carmody, k=1)
- 60699 5737811892 0298629208 3722418134 2437097771 4796721373 9704320001 (Phil Carmody, k=967)
- 64865 1123046875 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4251)
- 66408 2786653543 8581760000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 67108 8640000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 70983 6109111765 1264920107 5788596426 7188683152 1987915039 0625000001 (Dario Alpern, k=536337)
- 94283 8592529296 8750000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6178987)
- 95780 9713041180 5364739668 9196894323 9761711951 3647513600 0000000001 (Phil Carmody, k=1)
- 97398 7840000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=23779)