Known 60-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 60-digit prime factors of googolduplex − 1
This is a list of known
60-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1455191522 8366851806 6406250000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1557376144 7398101496 3784655774 2471185745 3617177952 2560000001 (Phil Carmody, k=333)
- 1600000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1831054687 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2381263667 2000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=45419)
- 2469937767 0892259317 6422736729 0518303218 5259976294 4000000001 (Phil Carmody, k=169)
- 2728484105 3187847137 4511718750 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2831155200 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 2873429139 1235416094 2190067590 6829719285 1358540942 5408000001 (Phil Carmody, k=3)
- 3078632557 7728000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 3377699720 5278720000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3503995930 2892767485 6243200000 0000000000 0000000000 0000000001 (Phil Carmody, k=371)
- 3552713678 8005009293 5562133789 0625000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3666400516 5221169590 9500122070 3125000000 0000000000 0000000001 (Phil Carmody, k=129)
- 3907248248 9944814926 5036083200 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 4722366482 8696452136 9600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6087548942 9539419848 7040000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6758537)
- 6273074729 6034695675 9040000000 0000000000 0000000000 0000000001 (Dario Alpern, k=217641)
- 6821210263 2969617843 6279296875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 6858816458 2501659041 8364443104 6578012160 0000000000 0000000001 (Phil Carmody, k=129)
- 7009600759 0220172985 1617004444 7129600000 0000000000 0000000001 (Phil Carmody, k=27)
- 7063150405 8837890625 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
- 7389644451 9050419330 5969238281 2500000000 0000000000 0000000001 (Phil Carmody, k=13)
- 8940696716 3085937500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8964573197 2658876385 2959118594 2990705370 9030151367 1875000001 (Dario Alpern, k=21167)