Known 58-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 58-digit prime factors of googolduplex − 1

This is a list of known 58-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10620023 6032000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1620487)
  2. 11493716 5564941664 3768760270 3627318877 1405434163 7701632001 (Phil Carmody, k=3)
  3. 11522358 5880896983 7241420464 1245305538 1774902343 7500000001 (Dario Alpern, k=4251)
  4. 12079595 5200000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  5. 12582912 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 14103150 5920000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=215197)
  7. 16277800 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=81389)
  8. 16951958 2845566823 7467648000 0000000000 0000000000 0000000001 (Dario Alpern, k=367587)
  9. 16997500 8460800000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=101313)
  10. 18591907 8400000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=28369)
  11. 18861990 0331019468 8000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=53609)
  12. 21818433 8636800000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
  13. 22300745 1985306231 4153571827 2648361505 9804160000 0000000001 (Phil Carmody, k=1)
  14. 22322153 9139212125 3975159256 2190103933 0261571993 6000000001 (Phil Carmody, k=391)
  15. 30616061 1391357428 1707520000 0000000000 0000000000 0000000001 (Dario Alpern, k=16597)
  16. 36994260 1949384801 1703077232 8130913935 0407924940 8000000001 (Phil Carmody, k=81)
  17. 37545738 7402633457 8957175835 9670639038 0859375000 0000000001 (Dario Alpern, k=6763639)
  18. 41772141 3015215148 3343914151 1917114257 8125000000 0000000001 (Phil Carmody, k=301)
  19. 48674748 3139683689 8456115250 1555625349 2832183837 8906250001 (Dario Alpern, k=11493)
  20. 51091200 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=7983)
  21. 52052902 7718716697 9895837537 0752000000 0000000000 0000000001 (Phil Carmody, k=657)
  22. 54035198 2993408000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=251621)
  23. 59515069 0757011046 4000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2643)
  24. 64741267 9022352222 0912855118 5131072998 0468750000 0000000001 (Dario Alpern, k=46651)
  25. 68821426 9644119025 4930120318 0220909416 6755676269 5312500001 (Phil Carmody, k=13)
  26. 73609375 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4711)
  27. 79228162 5142643375 9354395033 6000000000 0000000000 0000000001 (Phil Carmody, k=1)
  28. 83558400 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
  29. 86201711 6176384000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
  30. 88976940 3236367072 5837455360 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  31. 92025000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3681)
  32. 97578195 5236953990 6067075207 8294754028 3203125000 0000000001 (Phil Carmody, k=9)