Known 325-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 325-digit prime factors of googolduplex − 1

This is a list of known 325-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11301 5110710283 5370599102 3854093337 1234869030 2498128559 0628075354 1794730845 2707444454 4835177084 2205080058 3830598428 9097510969 7082940670 6772963982 2481227214 4286140912 3626256178 4873647829 0941301415 3025421777 7096137353 9648775476 9623279571 5332031250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
  2. 15751 1015278402 4799194441 4899623310 8874740844 8595742445 3342611868 6925022562 7546486009 3003606577 4612264128 5586825216 6497347974 1052690407 5822413275 8832327790 7499352842 7648465750 8840501305 7722881262 0666348369 0720287962 6444852078 2199220178 3489750965 8276248956 0991525650 0244140625 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=993)
  3. 18516 3571042316 0755757282 2425645816 4507308833 7555889268 4245570982 1165660497 5738176011 4581916954 2565201814 0388432691 7785863031 4403853844 8512554168 7011718750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  4. 19034 5637798673 6917455518 4168729076 6011771413 7275821686 2045452409 2960752341 6974605449 3055717918 3821467224 8443293313 1718849515 5350683272 0027085529 7682571348 3382903737 4801771300 1619941155 0118285513 0714620385 5855332885 3709791031 0814767587 1286708115 8037763088 9415740966 7968750000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 29569 6176698792 7478466281 3885112644 6932335246 8857090323 9851596635 5567043077 3783535414 6370848381 1166812945 9791934934 9049481659 8847549801 4276612964 0073343834 5444308149 4608244958 5183782314 6013306541 1355346441 2689208984 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=771)
  6. 59091 0631538287 0899685715 6879979734 0022311278 0836167702 4654585896 9790092177 9916328220 6454990799 1729264535 1474773490 0932912763 0065764213 6101566037 0645955665 4663457651 5610551151 6394531835 5281792311 2196911081 6268041994 9534631741 1756663232 8203283609 8341156694 2358206233 6208764463 6631011962 8906250000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 74676 1833343337 0048572876 8645361490 8870830260 2465400559 7213399377 4763860084 2460129420 7337877508 5634034835 9907466146 9785496592 5216674804 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)