Known 308-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 308-digit prime factors of googolduplex − 1

This is a list of known 308-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11039098 1117888588 9085267477 8265457983 4609390238 1956223486 4600946015 1123347137 4133328524 7952226284 5104135118 0611279831 5740074751 2509365070 9561886981 5033122550 9353672703 5274935815 3232606127 8581619262 6953125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=549)
  2. 12325951 6440783094 5955825883 2543534838 6438505485 7848444953 5608291625 9765625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 17031839 3600326028 7964021486 4989235392 9863869372 4272640370 0200367385 6353149822 0854514014 7534909427 6077923633 8069102210 1524778326 7838346772 0636788447 8122610479 0793957915 3187961888 9925475462 5562752131 7729096905 1615177054 5150156976 8879562616 3482666015 6250000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 21280845 8352427740 6364643033 3586310684 6039483156 2697474551 9144991348 4280986931 8601963789 8912108251 5337167882 3234766289 9691324422 2521921500 4017314640 8051252365 1123046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
  5. 25246425 9080078712 7551270130 3702278931 6173031407 7952509598 2794267508 1216140499 3548434113 6775854138 8235580202 1692775308 4130208804 0792815873 4799942593 5161722306 1780002498 0093875822 5202810589 4320445467 3973240441 1394895304 8243541762 0644691756 7320878225 0250052468 9175026571 4193801613 8738021254 5394897460 9375000001 (Phil Carmody, k=7)
  6. 27229161 9012842691 0575177789 0294661428 2281036940 9306077296 0833181327 9274475618 5444044073 4459760258 8845097795 9575624234 9886201193 4304149631 5601629879 3656370646 8921285839 3341970675 4600269811 3849897010 0336626413 6313751274 5558306333 7470417683 6073087411 5605004703 8661432452 4998664855 9570312500 0000000000 0000000001 (Phil Carmody, k=9)
  7. 35373746 4016668451 8558249723 0030436643 2911374927 3100855305 7089413810 5520257533 0122945129 4734222492 5759920017 1600342902 2093291925 2862236536 5720270347 0829874277 1148681640 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)