Known 303-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 303-digit prime factors of googolduplex − 1
This is a list of known
303-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 123 0431161172 6286663712 2042945406 9744679145 5149650573 7304687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=119)
- 206 7951531382 5691871785 2173017490 7133914530 2772521972 6562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 331 8000814482 1074114553 4130818128 6908442079 4309981802 3266307009 5672367683 1324184500 4056432399 8495047639 9281737583 7603678591 5433324767 3207551997 6206123828 8879394531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=229)
- 361 6567118174 8001431654 8499205852 4554223656 8608240612 0378863595 7766254294 4922517503 5368058640 4492607877 2720422572 9502658140 7951662982 1680514625 0655968855 6184275171 0121233654 7030778881 9452247424 7483577787 3261251324 8220486029 5905480584 1554447454 2002717498 6898899078 3691406250 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
- 406 2453688316 4267517817 3991626130 7958252966 5714308267 6351515011 2367305584 2076056880 6979712963 3364381774 0814470722 6880175602 6494544589 7477246943 7297672811 8374012410 6407165527 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)