Known 299-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 299-digit prime factors of googolduplex − 1
This is a list of known
299-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 115262978 1227259372 3981063514 5907656023 9053654545 3022509960 8554349417 1913925699 9671766523 7184746729 3264344334 6023559570 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 148574489 7589347582 5806452928 4000466244 0922705282 1786530278 9159178104 0596625947 7965826668 2652126412 6048475773 2562854926 0727595537 9009246826 1718750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=191)
- 248558405 6604757982 7474938568 5936654016 3950843653 8603845399 9799111534 1153780216 0595563902 8087584459 1512198030 8695960379 4127233706 5015873204 8043131410 2601846679 0649323326 6836818817 4849907531 6806413923 0609007959 7008990139 3285103381 4586116932 3325157165 5273437500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=467)
- 353409685 5390132888 2445439724 6688230893 5964829288 4230613708 4960937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 400694477 4880343967 1830399764 6534873342 2746177220 4747707330 3769843687 6929885643 8864040596 5289620349 1678761565 7085552811 6226196289 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=393)
- 552714787 5260444560 2472651921 9225572551 4240233239 2200864151 7022090789 8754023953 3171017648 0222226446 4998750268 1255357847 0207686332 5972445883 9379224173 1716785579 9198150634 7656250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 755299872 2710764012 2789024539 3264794760 0611866714 4200097705 9805016597 3935676788 6420129798 3527183532 7148437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=539)
- 798367470 0015282599 8313507179 6370409046 2368876832 5280017344 6892221201 6553897910 2555344441 5698879419 1152670334 6989166100 8973984067 9922504940 4849458491 1997366206 8466777280 5685713546 5256662307 3254006176 8551417429 4461424430 3913608291 6229497641 3249969482 4218750000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)