Known 292-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 292-digit prime factors of googolduplex − 1
This is a list of known
292-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10 7619722060 1459510469 4243199666 5558882324 1171361164 1127094284 4202735955 1502740941 9417381286 6210937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 11 1276184520 6226415719 5205784642 9185401026 9433627337 3007359117 1767527440 2028688807 6991936248 1696253126 0901675740 8003477081 1487021546 7817615717 6494598388 6718750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 14 4756607196 7798431024 9652111224 3499374017 1194076538 0859375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 16 1743164062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
- 21 8434341383 7364412085 0245434231 4793839750 3998426754 7643761124 9880240749 7088934187 5142777767 5715102605 3888426886 7702762418 1809631565 3783392242 3124787676 1852211302 5392172858 1190109252 9296875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=259)
- 60 5092486695 2059801278 1728645099 2476182846 7487576235 7273246295 9585065054 3902634320 0979409910 5783530766 8839910168 0538555302 6693187342 5547368003 6219541458 6014375380 6351985204 3792788000 5995808555 3266889636 9475858475 0028323462 9029638823 1504080162 4164701344 4548974803 1832277774 8107910156 2500000001 (Phil Carmody, k=1)