Known 291-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 291-digit prime factors of googolduplex − 1
This is a list of known
291-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 1236023251 2612759851 7403859326 0823767796 0560131060 3995920917 3089264919 8640175991 5876792423 4094235120 2633290975 1540804713 4020809807 7958348910 6944616113 8069425017 7889964138 6854981752 4286615899 5980185864 0275895595 5505371093 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 4075352783 7016415730 3619734933 6649523538 5379174384 2179308783 3628798868 1863381037 0364239265 3111838173 5691407363 9154612207 2955056239 8097540381 2970650368 5220010300 1039876993 1612150685 3960454463 9587402343 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 1 4688456356 7221886874 9767163572 8652472935 5565238808 5236971403 4673313622 1067786922 6162935584 7583905412 6439021197 7856458974 7116286844 1751925274 7297286987 3046875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
- 4 0091470651 3829346921 0804700727 2228182227 9532015757 3046942906 2382405979 6148069553 8005747380 3390166722 2380638122 5585937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4 0960000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 8 3392360067 9547827024 6356768435 7676401611 3532222713 9032225558 1521888077 1157556187 5648068767 4918151283 2043956456 2216909982 2810697792 2347120821 5604572719 6609013803 9027077591 8064317693 8064727379 8290441959 5797662623 2266426086 4257812500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)