Known 282-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 282-digit prime factors of googolduplex − 1

This is a list of known 282-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10 6033179609 5779720290 1012672295 5444951453 3366454320 1252303591 5373128344 8564566205 8131683646 0007422851 2464028827 1998622775 4357259030 2207687408 1568705862 4650199346 8243857575 5133830397 9400462691 6547695363 5735127348 3157932161 3526101231 1730155488 4761571884 1552734375 0000000000 0000000001 (Phil Carmody, k=51)
  2. 18 5817465094 1440000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=169)
  3. 22 0405190779 1789077441 3810072917 1064590999 7918947664 1028289094 4927203236 1477613449 0966796875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 23 2830643653 8696289062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 53 9348247959 1565688564 8016091111 9166359750 8593496128 7408469150 3479087667 5006252738 3308115532 4616292485 2839695537 2765653180 5223494302 4814128875 7324218750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
  6. 96 2689456346 7172249600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=167)