Known 278-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 278-digit prime factors of googolduplex − 1
This is a list of known
278-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10736005 0508989590 4051200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=291)
- 25908505 6652833338 7615905558 8401198713 3480010933 0884415507 1110410505 7754094872 8117391452 2510416864 6796816418 8183844899 0790985296 8404958400 8095901133 1174224324 0587413311 0046386718 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28486703 2372793962 4241972680 8685871462 6628975008 5983489883 9339972487 0246919344 3347709935 6795314240 8002790828 9896448890 1327740677 5159761309 6237182617 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 37865323 4506085666 5976297113 3573739024 3139088852 3310422897 3388671875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 42949672 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 56007137 5007502753 6429657648 4021118165 3122695184 9050419791 0049533107 2895063184 5097065550 3408131422 5526126993 0599610233 9122444391 2506103515 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)