Known 268-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 268-digit prime factors of googolduplex − 1
This is a list of known
268-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10944287 4012709498 9726880994 2541911024 0088306686 5792380237 7667814198 9726926350 5197529513 3865205472 0370384522 5048309818 6331351698 2653937671 8924811326 8168630561 7521898738 5544608323 2002893412 4629190334 6743892347 2619908693 2332815713 6643312696 8331634998 3215332031 2500000001 (Phil Carmody, k=329)
- 11668153 6459896407 0089512010 0837732951 1067228163 5218837456 4593652730 6853138163 4395221989 6543360713 0317943123 5541585465 3983842581 5105438232 4218750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 11985091 4680120277 1751897449 9478212018 9824597473 1310928982 3117961882 5811882854 3910268578 5849700517 4616142177 0401643525 0276288863 7949822238 8380740923 8547274053 3523082628 4145978647 2025905723 6262378864 9216294288 6352539062 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 17448341 0460404275 1681877709 8350778942 4038492143 1541442871 0937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 18924474 7161865234 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
- 22136092 8884514619 3920000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 23384026 1972944466 9125895732 3460528314 4949206876 1600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 30092655 3810505602 0399965535 2889489352 1578382533 6544055062 4043680727 4818420410 1562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 50176676 6966939020 6845536611 3458813388 4559360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)