Known 265-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 265-digit prime factors of googolduplex − 1
This is a list of known
265-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 11985 0914680120 2771751897 4499478212 0189824597 4731310928 9823117961 8825811882 8543910268 5785849700 5174616142 1770401643 5250276288 8637949822 2388380740 9238547274 0533523082 6284145978 6472025905 7236262378 8649216294 2886352539 0625000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 14382 1097616144 3326102276 9399373854 4227789516 9677573114 7787741554 2590974259 4252692322 2943019640 6209539370 6124481972 2300331546 6365539786 6866056889 1086256728 8640227699 1540975174 3766431086 8683514854 6379059553 1463623046 8750000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 20194 8391736579 0221854025 1271239327 4796340847 3879098892 2119140625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 32883 7868399453 1565958290 8736116367 9422584822 1696000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 33347 1029692417 4155787763 1310790727 8355437632 9871518334 9760000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 35253 2532130092 2481480560 9329931186 7068416000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=259)
- 71248 3905795291 6815943740 2868103296 4617070030 0659932142 6445553628 8908823760 9002322826 4936903646 3778691245 1517505573 4724675209 5663113635 6022263728 1160729116 8911615386 6052627563 4765625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 73786 9762948382 0646400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 74732 4309504000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
- 75356 8256303497 6285994765 0651243691 9758975848 5560788325 2396334007 2190093183 9722135808 6831842537 9383303382 6729539406 1306978983 3389222621 9177246093 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 82155 9453113868 1565341758 6116436563 7880318525 4400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=921)