Known 264-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 264-digit prime factors of googolduplex − 1

This is a list of known 264-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1124 0984669916 7580160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  2. 1423 2296118264 2829145537 8221813037 6772541670 9499343172 8166495257 9735565161 0889589344 3937069651 9364485666 8835235195 1685970309 3025756541 3908620212 9847077488 7938355866 0621242334 9643553076 3046806157 4902094434 9467754364 0136718750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  3. 1508 0735125394 6159711102 1144571783 8775219862 0543983090 6402267888 7998787342 5051111110 4542069976 2683757395 5079318480 8513079245 1845971224 7364694246 8553966273 5725321539 9868206958 4447162924 3344068527 2216796875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 1645 0881958007 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
  5. 1870 9352970645 3695229837 5527006037 3151706378 1607353408 8573356244 5122790486 9099125106 9348777491 5411137044 4297790527 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  6. 2059 0230357872 1156725558 0869388675 5874433518 3249384913 0874563090 8414344318 3003117036 1401439540 9317556764 0001629499 1889857529 4253699378 8401929211 7065681952 1843639009 2620058567 2631859779 3579101562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 2702 1597764222 9760000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 4650 6442752000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=693)
  9. 5030 6980803327 4057379458 0996036529 5410156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)