Known 264-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 264-digit prime factors of googolduplex − 1
This is a list of known
264-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1124 0984669916 7580160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 1423 2296118264 2829145537 8221813037 6772541670 9499343172 8166495257 9735565161 0889589344 3937069651 9364485666 8835235195 1685970309 3025756541 3908620212 9847077488 7938355866 0621242334 9643553076 3046806157 4902094434 9467754364 0136718750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 1508 0735125394 6159711102 1144571783 8775219862 0543983090 6402267888 7998787342 5051111110 4542069976 2683757395 5079318480 8513079245 1845971224 7364694246 8553966273 5725321539 9868206958 4447162924 3344068527 2216796875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1645 0881958007 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 1870 9352970645 3695229837 5527006037 3151706378 1607353408 8573356244 5122790486 9099125106 9348777491 5411137044 4297790527 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 2059 0230357872 1156725558 0869388675 5874433518 3249384913 0874563090 8414344318 3003117036 1401439540 9317556764 0001629499 1889857529 4253699378 8401929211 7065681952 1843639009 2620058567 2631859779 3579101562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2702 1597764222 9760000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4650 6442752000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=693)
- 5030 6980803327 4057379458 0996036529 5410156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)