Known 252-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 252-digit prime factors of googolduplex − 1

This is a list of known 252-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 12 9654325248 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=483)
  2. 14 8249658576 6792328424 0182259598 4642295921 3319395571 3742296854 2540583279 0917622442 6602090364 6947086408 7008011732 3941606974 2118626635 5276493890 3242872910 0557274200 8666864421 6842949390 4113769531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 16 6624495050 4115075621 6779495233 5368764558 5740457601 4268832011 3974813224 2621083501 1120737871 6081629029 9527248830 6255206566 8242284868 2278981868 8761442899 7039794921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  4. 17 2799639452 0390634774 9491783644 4794880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  5. 17 6324152623 3431261953 1048058333 6851672799 8335158131 2822631275 5941762588 9182090759 2773437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 20 6158430208 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 22 2143115238 3628156909 2083964524 2318172669 3418605332 8155206221 8240000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  8. 23 3472000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
  9. 27 2256918406 4249496875 5280235288 0435525823 5323815510 6207317385 1897049323 9890480255 5179758601 1749970741 8672882930 3660859295 6326901912 6892089843 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  10. 33 7350334183 3767431791 5436964064 0608246718 7642357922 4160248841 6803460617 3110323069 5201201185 4386258850 0213786697 7147123425 7621052610 6229177208 2046004133 1045886181 5277487039 5660400390 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 70 2251453203 8297490733 7741207880 1485487253 5008191274 9745057331 8079057491 5010999474 2299526463 0889695016 4580685947 1300294587 6300612987 2396806918 4038507112 9339063611 8122758667 8436359526 7913493724 8761616501 7243474721 9085693359 3750000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 72 1866699569 4682878411 1578366888 1637851770 8761133639 6898304000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)