Known 240-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 240-digit prime factors of googolduplex − 1

This is a list of known 240-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1370157784 9977214858 1595453067 1515330927 4367590400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 1448908652 6122739788 0145908654 2046684909 2049917022 6211033321 8382389680 2109748552 1835832503 2313753295 9126323902 8750045274 4941237259 7237208537 9902273416 5191650390 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 1788139343 2617187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 2294052352 0307312789 2158777278 5505000051 1905594773 7105194639 5628876074 5781788037 5175804941 9597063067 7550161635 7360035181 0455322265 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  5. 2331819396 0164201127 2049167861 8480930413 2273684372 3854342798 5830663874 9959928150 3181854649 4917732677 3316621964 9343764229 3754761339 9517414788 3356954145 1757639820 2250956184 3441605599 7360217588 7208431959 1522216796 8750000000 0000000000 0000000001 (Phil Carmody, k=19)
  6. 2405580653 9052439599 2468721355 5491285651 6839314286 8271791973 1307764395 2682696704 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=831)
  7. 3072000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 3674098196 1189034641 3060737466 2118208773 4419384382 2592000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=491)
  9. 5050881540 0960000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
  10. 5444517870 7350154154 1399371890 8291383296 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 8228460455 7560125557 8115576055 5719744730 6588974046 1265056126 1943948920 8161830902 0996093750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  12. 8679542392 6085660426 1226051202 1476461280 1015822932 3094574011 1397867140 3358237727 0005371027 3572307743 8350330707 7824271212 3295987680 6489774025 9766578674 3164062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
  13. 9353610478 9177786765 0358292938 4211325797 9682750464 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)