Known 227-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 227-digit prime factors of googolduplex − 1
This is a list of known
227-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1026028 2413541122 3868774620 4207739703 4842764106 0292023123 3373560246 5585949297 8736432122 7493277203 2032866045 9286758948 8640000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=651)
- 1045347 4311811229 5975948679 4030391945 5928320000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1079191 4230092370 1347717947 8478601223 0179898472 3024454684 5806829858 1561085171 9742490673 1520000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
- 1240770 9188295415 1230711303 8104944280 3487181663 5131835937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1303703 0248540710 9521180524 0582002023 0729397719 4619920040 7129887586 8040318485 3549195737 4320640000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1766847 0647783843 2958329750 0742918515 8274838968 7561895812 1606201292 6197760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1935139 4572416228 3792163013 0411135856 2971017096 1073719815 3590583232 7161766996 5905680907 8154186668 5480304640 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 1990403 3489557228 4265932716 5293348116 3927353918 5523986816 4062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 2213861 5680784098 7711320055 0766703991 6190918902 9738658551 6330235272 7103011036 4951437257 8827794409 8237032652 9752037527 9974815638 1577572128 9754288426 9021234988 6280662758 5086971521 3775634765 6250000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 2539067 7977761410 1721247092 0400050664 0883176026 2770904645 8903685561 3812804222 1069335937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 2638827 9066624000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3294436 8572595385 0760892939 1021880939 9093629319 9015860939 9300945346 2950909280 4987257824 2303265490 8090822400 2607198702 3772047080 5919006144 3086738730 5091123494 9822414819 2093707621 0975646972 6562500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4346725 9578368219 3640437725 9626140054 7276149751 0678633099 9655147169 0406329245 6565507497 5096941259 8877378971 7086250135 8234823711 7791711625 6139706820 2495574951 1718750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4846761 4016778965 3244966030 5097438595 1121803373 0983734130 8593750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 5841333 9658516810 8209680837 0372608000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 6560658 3790283765 7601300674 3862387389 2688802024 2784283558 8812835460 4719952941 4442872649 5746316674 9238923994 6322180205 0029093922 3120290080 2600197494 0299987792 9687500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=283)
- 8802621 2844532235 6615026579 2198728869 7780738691 1305459869 6212391008 9230971218 4074693509 1200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=177)
- 9324138 6833753381 3246409408 7481498718 2617187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)