Known 226-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 226-digit prime factors of googolduplex − 1
This is a list of known
226-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 117251 5646593484 8758932559 7275703588 8915052952 6217674265 5037998809 2215895513 6108064541 1414779405 4456852563 8169376179 5759201049 8046875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 162717 9155504128 7093703586 0120182216 7822691860 6079536473 1922754522 7250692632 9649623585 9933676692 8900033235 5499267578 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=761)
- 244140 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 371589 3134897233 3752815561 0022487547 4214174010 2037433533 7518807800 2901201193 2593777615 9166042152 5277822253 1544073681 7622726013 4847309775 0660662425 1697289808 2719227452 7526194560 7780944555 9978485107 4218750000 0000000000 0000000001 (Phil Carmody, k=231)
- 372231 2756488624 5369213391 1431483284 1046154499 0539550781 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 375766 8132438133 1646231689 5486293924 3801092078 2533117931 3166555445 1534440183 3735095419 1839741562 9924851095 9616000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 473650 8148158353 3539634987 2219378938 9901868092 1381407913 3809621853 5996085610 4055333814 2256780164 4500829938 8366272952 1090918935 8971776974 8788806881 3107388270 5884832225 4749449076 1374463794 1977089212 7417027950 2868652343 7500000001 (Phil Carmody, k=247)
- 484891 1672270976 4658994573 9059277515 1293666753 7840537600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
- 722317 6793523418 5790477513 5483323279 6942306728 5817447500 5246485060 8228784556 0190488533 2991580093 2948377600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
- 867696 6400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=331)
- 953381 8934188762 7805136007 8944666718 6702568845 4008846859 9257695612 4095788214 5473367977 7871262449 6687105121 1280917529 7906171334 1168982083 2179975695 9080696105 9570312500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=329)