Known 225-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 225-digit prime factors of googolduplex − 1

This is a list of known 225-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10043 3627766186 8922213726 3077132266 2657637687 1114245522 0633600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 10187 6389636800 5141344775 9202248765 7532678475 9790653046 3280441751 1774389834 1695075408 1972883456 0778618856 9649420898 7558362868 0744824324 1225327437 8599599003 7918090820 3125000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 11774 5040047421 5044686682 0414256826 8712339976 3368873175 8186927188 6279702059 9956583720 1067475396 5528641153 5426490532 2079215466 1467066034 6746444702 1484375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
  4. 11820 6018589183 4376368371 2030043084 1415239217 8113963400 0384488021 2737165314 4916318342 4279876465 4746922419 8839709204 4800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 14570 0166916929 6803189596 4301176391 7998180512 9289104640 9388593073 0417821390 3906373632 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. +161659663356434944948942201164163009493717089102370771373121362150985544514761379133487997023996012149425048654486737380370333511296921220558813648612791137845552210697266256120930676972710885926127946416909582894897995807233 (Phil Carmody)
  7. 21855 8003120625 6268806103 0055548410 7825051678 7658630244 8627568997 6675487951 2735901101 8850813256 4766445099 2646337331 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
  8. 23133 7246484070 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=263)
  9. 24741 6760107350 5140849710 0454962581 6929171249 1125723159 5085736887 4291238036 7222624499 8455513268 7091827392 5781250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=113)
  10. 25165 8240000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  11. 26388 2790666240 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 34175 7925747345 6131832034 7298712833 8336432723 5770644431 9152665725 1555156124 9024880036 7393390985 2160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 35955 2744040360 8315255692 3498434636 0569473792 4193932786 9469353885 6477435648 5631730805 7357549101 5523848426 5311204930 5750828866 5913849466 7165142222 7715641822 1600569247 8852437935 9416077717 1708787136 5947648882 8659057617 1875000001 (Phil Carmody, k=3)
  14. 61299 8216346355 5433433388 1086012367 3447495648 8734408704 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  15. 62322 4756336625 4413109866 7397286702 4987087906 8602816830 7080213401 7894221790 8428333396 6086418442 6908003939 3206088546 3301436702 0917339075 6419579852 8040445825 0774320029 6677559088 9654534709 7628564370 0975924730 3009033203 1250000001 (Phil Carmody, k=13)
  16. 64464 7270985295 5847348969 3694202687 2061073383 6906547367 1071231365 2038574218 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=523)
  17. 78044 8317527770 9960937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=419)
  18. 91828 3397483834 0547370902 8302449334 5478966865 8690970914 9040281772 6135253906 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=149)