Known 223-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 223-digit prime factors of googolduplex − 1

This is a list of known 223-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 162 9049511747 9939817334 1949073177 6999932908 5069772440 6471512293 3760000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
  2. 189 3266172530 4283329881 4855667868 6951215695 4442616552 1144866943 3593750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 191 4088313930 2788569814 8216680369 6189440000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  4. 237 7691486098 0172468066 2124117795 8279393999 1445414513 2170693959 3025890631 0221511670 7327524636 6392821073 5321044921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=139)
  5. 253 0127506375 3255738436 5777230480 4561850390 7317684418 1201866312 6025954629 8327423021 4009008890 7896941375 1603400232 8603425693 2157894579 6718829061 5345030998 2844146361 4581152796 7453002929 6875000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 269 0493051503 6487761735 6079991663 8972058102 9284029102 8177357110 5068398878 7568523548 5434532165 5273437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 345 8764513820 5409280000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 463 8567095021 4302187133 7258255880 8363392383 0082421433 2203421573 1047583488 0266942205 9016516299 7811059187 7939567093 5772947104 2289473396 0651186612 8132556830 1880934996 0065446794 0330505371 0937500000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  9. 602 6017665971 2135332823 5784627935 9759458261 2266854731 3238016000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 688 2157056092 1938367647 6331835651 5000153571 6784321131 5583918688 6628223734 5364112552 7414825879 1189203265 0484907208 0105543136 5966796875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  11. 926 1105574742 3793019438 1217989408 1692561339 5938632443 3089021106 4695395817 8816000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=819)
  12. 979 2299138878 4963151200 2560000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)