Known 222-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 222-digit prime factors of googolduplex − 1

This is a list of known 222-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 13 3009536784 2434761016 7847665977 1542936537 6450798752 4723375827 3068815469 7418212890 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=221)
  2. 15 1095838583 3634839902 3744318030 4793600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=291)
  3. 15 3914086704 6659344229 6500039118 5991426092 7315252556 5104667302 1110334850 6699109789 5083697755 8144201721 9008905871 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 20 5255004233 0249532301 4661707723 0398512603 6376952096 0211209852 9501666426 7742334278 5376901304 1561600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=123)
  5. 27 6069853871 6225514973 9023449108 1018098044 3588868154 6220650096 8951971840 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 36 4250417292 3242007973 9910752940 9794995451 2823222761 6023471482 6826044553 4759765934 0800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 39 3809286112 3066749176 1764494369 8220442889 6166182944 3115708087 8239687786 2242066738 4350074215 8336343131 1609566039 4442466002 2976511975 5367692305 7697223384 8209725692 8682327270 5078125000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
  8. 44 8973302988 0533764721 7198061044 2143638302 4772022272 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  9. 58 4600654932 3611672814 7393308651 3207862373 0171904000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 98 0797146154 1688693493 4209737619 7877515993 0381975053 9264000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)