Known 218-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 218-digit prime factors of googolduplex − 1
This is a list of known
218-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10984928 0369266913 3671263149 0613416228 1791220278 1206039756 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 11352278 6385009926 5403397264 5905762424 3801858726 5497711932 0457333495 1809015439 6791806397 6356836330 1396409870 0924436746 9061700811 7866071624 6274237803 0751977983 3353063865 6343070974 6302937901 4187725260 8537673950 1953125001 (Phil Carmody, k=37)
- 11935757 6738348794 1172917395 5523700162 4109476191 3634521857 1135445435 8279283008 0101279334 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 22576627 0011522664 4241901818 8129918323 4661866121 2526731179 1890137715 0220614960 2232943924 5132177799 7270220800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 30354201 4410270167 3311659229 4117482916 2876068601 8968001955 9568902170 3794563313 8278400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 42933339 4220102926 5613993629 4007997503 5143608993 6872067593 5536317226 6164881908 7505546153 7947425177 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=201)
- 45159032 5417177376 3719050414 8991437824 4615664862 5490280076 4895867542 0954381185 5454009673 8492138683 7959289550 7812500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 50744216 8149658766 4544205166 9128815676 1935307967 2252852507 7878068710 9095814255 2141878550 5706934848 7168000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 57351308 8007682819 7303969431 9637625001 2797639869 3427629865 9890721901 8644544700 9379395123 5489926576 6938754040 8934000879 5261383056 6406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 63672743 5230003213 3404849501 4054785957 9240474869 1581539550 2760944858 9936463559 4221301233 0521600486 6367856030 8880617223 9767925465 5152025765 8296486624 7493773698 8067626953 1250000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 69029645 3344132066 3259644201 8855479584 3890058698 4243200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=369)
- 70494794 8798308874 8448396324 8914222446 4619996204 4570009600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)