Known 214-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 214-digit prime factors of googolduplex − 1
This is a list of known
214-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1065 4330253601 0742187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=143)
- 1513 0370379415 4800175151 5139845514 7701150619 8798587315 2049214466 7230357160 2549288747 8307824187 5807606069 7451482778 1734400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1937 1549970826 2711884496 3775939980 0598818341 0845009540 2876971195 6492471927 0493369549 5128631591 7968750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 1987 4496367458 0009134580 7287193762 3986232380 9562938532 1082199763 3845605534 3507244659 5053654295 4472495802 1002001713 4080287008 6763282432 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 2036 6267709991 8350231040 8955028253 2034273497 1038143363 7878978889 3755875139 6657450956 6176475161 7916096605 0611200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 2356 4608749519 5296163430 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=499)
- 2813 5046375998 8400624934 0018257498 7411499023 4375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=519)
- 3100 6645165902 6631463512 2445199979 9057056986 8224284091 6113087338 3139156514 8619016728 6815569151 4320532530 3331521525 0968874174 2477358087 6262712990 8651113510 1318359375 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=107)
- 3137 7567211166 0242080688 4765625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 3195 2564399888 6479862075 3408121021 1820056851 0646430731 5728931918 2505514999 0735192301 9375654107 0736277466 6248858894 3360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=519)
- 3214 2423655296 9240460201 3968967078 0252854136 3179867681 6625492946 8550471938 2151961326 5991210937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 3496 8040060063 1232765503 1432282334 0319563323 1029385113 8253262337 5300277133 6937529671 6800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 3864 3407558474 2534523640 7863662219 6374130125 7049817124 7001600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=197)
- 4968 6240918645 0022836451 8217984405 9965580952 3907346330 2705499408 4614013835 8768111648 7634135738 6181239505 2505004283 5200717521 6908206080 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 5771 7782514249 7254086118 7514669474 6784784774 3219708691 4250238291 6375569001 2166171065 6386658430 4075645712 8339701760 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 6125 2998827766 2536134834 5827770860 0890503592 1280121806 7706740248 6218752000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
- 9086 5195024359 4834992836 8576135168 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 9521 7976450504 9405750875 4948139880 6628523745 4877687923 7266257405 2810668945 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=309)