Known 211-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 211-digit prime factors of googolduplex − 1
This is a list of known
211-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 1974529911 6816281711 9930142105 0639160002 6740667156 2067320697 9528291778 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=347)
- 1 4551411682 2111999363 1608537328 0073780730 9245585546 9699526422 0953288871 8818806137 4703142921 7255424000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=109)
- 1 5023140325 4668348862 2978695201 9163937754 5794032862 7984844153 5813988562 0857546082 0810255564 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=59)
- 1 5576890575 6044828855 9148898766 0288000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 9615307401 8031372330 4580579986 8142584312 5297967997 9862395226 6028293379 4473867482 9296847662 7699244761 1720862987 2104645203 0668800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 3 0809514462 6424219841 1334117852 9245160031 9209630925 2521985296 2435702935 1481763535 2576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=203)
- 3 3881317890 1720135627 3290002718 5678482055 6640625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3 9173578829 8931261810 8704524678 6263433165 9786375463 7370262319 5289795887 6746997702 8667926788 3300781250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=273)
- 3 9827297778 3113069257 2200994419 2795139777 6138798154 6965184714 6334654072 5378264540 2357724686 8004567148 5245861731 5278388559 8182678222 6562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4 8865257212 9751764345 2557956978 2435264115 6741647196 6772952123 8946684076 0881881346 8339798643 5703753855 9339423928 8972664585 0603520000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=231)
- 7 5885503602 5675418327 9148073529 3707290719 0171504742 0004889892 2255425948 6408284569 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 7 6658811619 9490170490 2903156222 8742676807 6800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)