Known 207-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 207-digit prime factors of googolduplex − 1
This is a list of known
207-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1035869 6144717474 4492433411 3764516391 9527903232 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=929)
- 1280857 1033168493 8314629395 8789635106 6420069504 8689638317 0992860220 6970049567 6743703145 7731433177 2737947918 0701163069 7108638910 1178226876 1746980329 1835355020 9373094628 8063776705 7123710401 3562202453 6132812501 (Phil Carmody, k=637)
- 1355252 7156068805 4250931600 1087427139 2822265625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1368633 5465997328 3921161194 6900050951 9564553269 9430091839 6156864409 9749357784 9184946697 0112000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
- 1538329 3766872742 3000601263 4094446712 2739103361 0787251530 2596027176 0135517735 4678666067 1160276676 4061117621 4093802627 7581229805 9463500976 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=309)
- 1596139 4206015698 6089032010 7080629989 8332537896 6457246744 8150753280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)
- 1769787 1389553902 5251227460 2117373969 1146058137 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 2021145 6553412505 1960703591 3984964116 5769728967 0454774029 3750164709 7257845529 7723711170 3849928298 2612762624 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
- 2046441 6968252382 6408774264 5201208942 0013289583 5979913631 6564488683 0121745071 3637613032 8453613085 3060943942 4124656025 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=831)
- 2987047 3333733480 1942915074 5814459635 4833210409 8616022388 8535975099 0554403369 8405176829 3515100342 5361393439 6298645879 1419863700 8666992187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3987396 6119889779 8966161540 6163712476 8701321371 6462532763 7016988336 3999406028 0156092211 0488927449 0703515643 3807120124 5954078284 9387596797 8965491056 4422607421 8750000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
- 4347291 4000780406 6689005618 2781915446 1239895381 3466731257 7957152686 0800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
- 4627180 5712203763 2504305867 7888622825 0328021109 8372683864 9476811835 1110061482 0939276712 2518204830 3393319418 7038539375 2720548807 4708682680 1239555047 4240000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=579)
- 4651767 8354918840 9951567237 0483229019 8633047083 9883558580 1537274756 0914439257 4670928762 2724568086 8195888801 3828010353 8774621450 4231337984 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4874572 9674948279 3529750779 2711257934 5703125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=281)
- 6137345 0006891976 3969856326 9410280757 6110123549 8882998395 5405013296 1307764681 9776330979 9636387602 4619346122 9772659493 5333186149 0371598039 0952466905 2188983187 0794296264 6484375000 0000000000 0000000000 0000000001 (Phil Carmody, k=347)
- 8858094 8266546889 4990318035 3164624950 7751538269 2150314901 8505176605 3544174551 0400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=153)