Known 205-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 205-digit prime factors of googolduplex − 1

This is a list of known 205-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 13749 9641508371 7085819983 8407081637 6284308174 0565704936 1120694941 7076404577 1527599316 3935577146 0779248298 9721012048 5852728524 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  2. 14615 0163733090 2918203684 8327162830 1965593254 2976000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 17021 6755401739 7877986295 8080000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  4. 22949 7295769324 1163851627 3384651324 1696049285 3318545197 6238021085 9958969236 6718319166 5687835802 7026942296 6517332221 5876129816 7587047677 8494702387 2000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=941)
  5. 28334 1988972178 7128217600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 29409 1694067412 6368799673 1208702623 7440000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=177)
  7. 29514 7905179352 8258560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 32862 6015289046 3359653949 7375488281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
  9. 39059 9641610582 5240681319 7760473577 4339881969 7548334264 6858348188 6719486363 5570996854 6310493653 3114067239 0874511037 3394382741 3949129698 7840512000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=41)
  10. 43816 5041660729 6834848937 9262099500 6869503213 5680000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=307)
  11. 44291 7347617635 4489284941 9543175276 3121750204 1688344429 8403309012 5702066194 1018595268 9767152869 9672763589 6616038184 5217824764 7867437056 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  12. 47428 4397516047 1364549467 5459558567 0566993857 1904637503 0561826409 6412179005 1778560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 69316 7423530203 7148946035 4603577092 5859109268 8439541437 9261989515 3655326951 4064057599 9360152603 4894524347 8027403508 9295724353 9456000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)