Known 203-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 203-digit prime factors of googolduplex − 1

This is a list of known 203-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 153 4401847451 3165015686 8267038793 7102601550 9590826866 2007029282 8795062717 0646911976 0153285577 7767573664 4781331847 9378328557 0589005883 7779937477 4730752000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 154 6870966969 1817215474 8182079668 4233198466 9581364180 5312607818 0942109551 4929685492 3094275242 8933766543 3634361385 5465843195 9040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
  3. 203 5148428027 6992935381 0666208641 2696190195 8099244905 6878817255 7705790006 7175141853 1333494199 8537983570 1350604975 4529821389 6884560121 0368000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  4. 304 8853589433 6304022317 3278451671 1181708425 9246808295 5433785157 0089905852 1378266128 3497185671 2169106384 4360386157 6213074162 5880576000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=563)
  5. 306 1446300854 2839448700 2340446916 7067540991 5084800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
  6. 312 8887259649 7706285083 3257739680 4855375055 4526708780 8097711173 0208329676 4364851806 9769836953 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 370 9206150687 4213857317 3526154763 9513367564 7787577910 0245303905 8917581340 0956293589 9731208272 3208437536 3389191360 0115902704 9567384892 7253857254 9819946289 0625000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 399 6293539576 6876669632 0071445858 6381871690 5472000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  9. 405 0093593832 5710594654 0832519531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
  10. 467 4997565687 6455679860 8285489952 2879613119 9634633236 9520994233 1268305082 9568577406 9089697792 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=459)
  11. 486 3887597560 1356800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  12. 494 1655285889 3077614133 9408653282 1409864044 3979852379 1409895141 8019442636 3920748088 6736345489 8236213623 3600391079 8053565807 0620887850 9216463010 8095763668 5242473362 2228814056 1431646347 0458984375 0000000001 (Phil Carmody, k=3)
  13. 495 6513846892 3769598521 0953302016 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=391)
  14. 595 2781562317 3381430842 0281963978 0440497206 4913699644 6010082718 2539639853 2065367348 3093371032 7371954917 9077148437 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
  15. 735 2373481323 7305286808 7859118080 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
  16. 768 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)