Known 196-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 196-digit prime factors of googolduplex − 1
This is a list of known
196-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 109020 2574756234 5005056000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=591)
- 109599 7319870341 5294446392 3092959164 1849236104 7806573849 5980884673 9328204800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=397)
- 134765 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 159507 3594941899 0474845684 7233641349 1200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 174483 4104604042 7516818777 0983507789 4240384921 4315414428 7109375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 189762 2406881257 2481347003 2220578431 8119551499 5179224555 3149110499 8024892292 6036223186 6879069489 3112049803 4606080000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 216960 9069824218 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=91)
- 281474 9767106560 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 335882 1823011339 3277296255 3186811324 3530449274 4876370124 9845325946 8078613281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=109)
- 340265 0410707211 1824022226 3394335743 1019704143 5878948656 9933916724 6425170445 9962608407 7395636808 1561264855 6338147829 6745721606 8985051786 9972992834 8816088146 1226381361 4845275878 9062500000 0000000001 (Phil Carmody, k=197)
- 360584 4341510593 7786864042 7541165219 1113644753 8443135571 6518814766 8397385102 0243143636 0221107775 3798111523 6129842653 9072109088 4163826878 2853072061 7267200000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
- 403154 0535920047 5790033961 0502319970 0618961895 0223691628 1998038173 4825368124 2897016855 7948788889 2808396800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 440592 4679989430 4677802477 0305713890 2903874976 2778562560 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 468315 6491691430 8597225008 3725615591 6255887360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 535867 2842709649 1728699494 5361953147 7490844540 7833007468 4096790297 7418160923 6206431523 4021066434 8527149701 4066817269 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 709106 1391008514 6111877042 4941911593 7710635887 6360287556 8810497480 0298686722 4427956005 1920641765 6097109347 9978149440 6711802552 8724187304 3926364682 6359020943 5729920000 0000000000 0000000000 0000000001 (Phil Carmody, k=807)