Known 190-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 190-digit prime factors of googolduplex − 1

This is a list of known 190-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1076197220 6014595104 6942431996 6655588823 2411713611 6411270942 8442027359 5515027409 4194173812 8662109375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 1619950511 6238493984 6816678254 9815252423 2864379882 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=153)
  3. 1664568022 1336779743 6643293117 5100183059 5295008209 0713907982 3440470831 3878642101 1613117553 2593152000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=399)
  4. 1784389068 1457149162 9858994836 5051131838 1895404873 6583799105 8438988469 4523183919 0176579902 9502289553 4516719905 4338346682 6827446998 2489804800 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=491)
  5. 2179158613 5288600641 1739446615 9238214103 4443075202 0221394116 0447114079 0373061822 4841092084 8599884957 0525991149 9240068092 8391620838 6244761641 1373019218 4448242187 5000000000 0000000000 0000000001 (Phil Carmody, k=47)
  6. 2993496475 3032591236 7740084320 9659704273 0205057176 5454171736 9991219646 4779055860 0171095804 3986465781 9271087646 4843750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  7. 3889384548 6632135669 6504003361 2577650368 9076054507 2945818819 7884243561 7712721146 5073996551 4453571010 5981041184 7195155132 7947527170 1812744140 6250000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 4168515212 5433830352 4855546031 2764682717 7194479630 6030542047 3024284872 6670376960 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  9. 5293772731 3151117182 5553369609 4089020600 5586364170 8019541118 8816538514 1771841931 5752960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=109)
  10. 5316911983 1396634916 1522824112 1378304000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 7125391066 0962522681 2849567700 2902092871 1752606327 9665183602 5760344910 9938561150 2792459868 0242420424 1723049702 8461061675 8860004487 9755112116 0732672000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=913)
  12. 8271806125 5302767487 1408692069 9628535658 1211090087 8906250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 8636168555 0944446253 8635186280 0399571116 0003644362 8138502370 3470168591 8031624270 5797150750 3472288226 5605472939 4614966359 6995098946 8319466936 5300377705 8074774686 2471103668 2128906250 0000000001 (Phil Carmody, k=1)