Known 185-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 185-digit prime factors of googolduplex − 1

This is a list of known 185-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11871 8592707090 1763490412 1008943065 1216863047 5685816831 5875026692 4590668051 1352962417 5187250939 6661595006 8822844877 4688288865 5216467240 5807844221 5444890872 0599971250 6313755852 8000000001 (Phil Carmody, k=3)
  2. 12692 2746007727 7309987677 3914229203 9647053699 1291419941 0265256869 2685911917 3717783984 3632840442 5334690737 5127088044 8479441715 2000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 13292 2799578491 5872903807 0602803445 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 15292 3166751861 5722656250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=821)
  5. 15300 4354800050 3436184973 6719068686 8892494913 9588108412 5184000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  6. 26727 6471009219 5646140536 4671514818 7881519688 0105048697 9619374921 6039864098 7130358670 4982535593 4444814920 4254150390 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 34888 2587661891 3074636754 2778624217 6489747853 1299126689 3511529560 6706858294 4310031965 7170434260 6511469166 0103710077 6540809660 8781735034 8800000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 38423 8781859331 9981408007 7279404816 6900260221 9729884587 0920211225 3248366156 1059697608 9122856808 4509317662 3919895448 2701434880 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  9. 38857 8058618804 7891482710 8383178710 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  10. 39260 7552570275 2251080453 7104508243 7564993541 7569375374 4628587077 6830455185 4080000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
  11. 70835 4972430446 7820544000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 70940 7347564438 6421551381 0154052004 1460632608 0749861094 5201581871 9206735609 7169295026 1058285832 4050903320 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
  13. 79027 3982464000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  14. 80469 1248680987 5444137984 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=213)
  15. 87526 1701666652 7386601923 5188287763 5201853000 7682714396 9779409104 6156755883 2011466456 2635418433 5455759605 2797024138 0939973305 3469963872 0861031886 0711716978 6880000000 0000000000 0000000001 (Phil Carmody, k=51)
  16. 93652 4565094797 6694144791 6893794989 1724579442 7994913452 5774708788 7611521645 9296860360 9183091904 7591347948 0793364219 8686863439 2703786485 5918870528 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)