Known 181-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 181-digit prime factors of googolduplex − 1
This is a list of known
181-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 2528584578 5571670912 8376468977 2571306946 2353754924 1577169658 1994501868 6296271735 5626796056 3559427100 6993949413 2995605468 7500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 2742462283 8943455947 9708988293 2223230609 9671056944 3399237252 8649906065 0374885217 9661470098 2675241677 8640720318 6835149876 3382326567 4838223375 2797791084 9536011063 5809011009 7948672001 (Phil Carmody, k=161)
- 1 3072942111 1434076161 8167910322 1895562540 4204382592 0240530425 6384505460 3937043634 0599910575 2727716413 3613568000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
- 1 7126972312 4715185726 9943163339 3941636592 9594880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 1967352512 4179510879 4208255706 0458295262 1929604585 7731006228 3069393738 1868724993 6679219085 0116654575 9273481964 5273874571 8790361599 0932602002 3689053156 8182886400 0000000000 0000000001 (Phil Carmody, k=1)
- 2 2474294663 9810486722 9954420944 9923521325 5951682578 7314730683 0880442123 5507200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=159)
- 2 3871515347 6697588234 5834791104 7400324821 8952382726 9043714227 0890871655 8566016020 2558668800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3 4226584028 2362793892 9235229579 0683323246 3869279664 1923205614 1381343343 5871946089 2651169652 7191424893 2633162425 5317365168 5938239097 5952148437 5000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 3 9534556850 4529405330 3297775515 1006178758 5374633948 1478839580 3710859900 4605287198 1226500067 4691697868 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=723)
- 4 0234064994 5792661057 4531878228 2993197441 1010742187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 4 6056811697 7810859680 1757812500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=633)
- 4 6328672042 9994445345 3858208510 2156204090 6127811992 7869949929 4555615842 0969873931 2301437477 2824538868 4034048000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 4 6374450276 2071001363 4422269118 3848131587 1279564772 1998388682 3017418229 7074747250 9443432519 8983070935 5495633923 7802612612 8380943932 5158518689 1490408160 4968984363 7697778810 8800000001 (Phil Carmody, k=3)
- 6 4502678062 1824105578 7275862499 9651197111 1645779030 7004156408 3917112056 3447041884 1600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 6 9475253542 3897172541 4259100521 2744711961 9907993843 3842367455 0404747877 7839616000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)