Known 180-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 180-digit prime factors of googolduplex − 1

This is a list of known 180-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1262177448 3536188886 5876570445 2457967477 1302961744 3680763244 6289062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 1418093450 6664217804 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=123)
  3. 1600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 1756403854 6744934400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  5. 1835216848 1534771200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=163)
  6. 2493795066 7114341810 0669889554 9315837311 4358590850 0295450208 3948052480 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
  7. 2562106503 1420142891 8636642280 5215983596 5857964227 9616249225 2952111753 4905997276 7972482345 3766016568 6016878886 6208827721 5709470740 8666624000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
  8. 2607709144 7003173450 3779413425 9991589300 5896316836 3561635487 7129197120 6665039062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=677)
  9. 3261280134 8363973374 9441802501 6784667968 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
  10. 3392346364 3744979127 9993120142 6403550388 7690820011 8839959348 3906481829 9699200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  11. 3786532345 0608566659 7629711335 7373902431 3908885233 1042289733 8867187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 4332296397 0637732180 9127216272 3568286619 4329302747 1339870387 4344710345 7934462900 3599996000 9537718090 7771737671 2719308098 2772121600 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 4697406064 2057268701 8618339784 1305600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=579)
  14. 4725841511 7979933805 7934654801 2396920700 9280000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
  15. 5187485597 8317655549 7598012838 9218271826 4953130206 9726896769 9763554508 2078691328 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  16. 5528560347 5315048501 2877687157 3497236691 6584425596 9113076030 8463783941 3809090594 0430275222 7522432804 1076660156 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
  17. 6331658277 7114760719 4886453810 2968064899 3625369910 2310180001 4235978168 9627272157 9956009986 7167821951 7337003885 0601316708 7394944878 2528309751 6918157060 8465098665 1333670066 9788160001 (Phil Carmody, k=1)
  18. 8581108761 0026988081 7177672172 2393448076 2585644362 3890701388 7455832445 9940195083 6181640625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=73)
  19. 9066943647 1097188102 9632000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)