Known 178-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 178-digit prime factors of googolduplex − 1
This is a list of known
178-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10641110 2134665796 3232707152 3107800621 9094891211 2479164178 0237280788 1010341457 5394253915 8742874860 7635498046 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=243)
- 17060070 0768759267 0327482447 8575996552 0750182400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=153)
- 35147764 0198687217 4070733209 1296733272 4195087367 3372369609 9652911029 9810989959 9898686750 5360186647 3214837571 1432438199 3150064578 5585492163 2037902485 0509092618 2400000000 0000000001 (Phil Carmody, k=1)
- 37748226 9099898227 1989716767 4664575443 3467923050 2160862670 2800393104 5532226562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 38893845 4866321356 6965040033 6125776503 6890760545 0729458188 1978842435 6177127211 4650739965 5144535710 1059810411 8471951551 3279475271 7018127441 4062500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 43322963 9706377321 8091272162 7235682866 1943293027 4713398703 8743447103 4579344629 0035999960 0095377180 9077717376 7127193080 9827721216 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 46116860 1842738790 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 51623278 4041821850 5666389400 9092076993 8661534570 7765667864 6365213075 2847391503 7351196164 8497774138 2534292682 6166393605 2439157349 7578691614 7055669274 9185229783 0400000000 0000000001 (Phil Carmody, k=47)
- 54569682 1063756942 7490234375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 55101297 6947947269 3603452518 2292766147 7499479736 9160257072 2736231800 8090369403 3622741699 2187500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 66121557 2337536723 2324143021 8751319377 2999375684 2992308486 7283478160 9708443284 0347290039 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 69078752 3570544788 7780773470 1675950944 9700749197 2270844915 2828530127 9579422973 3863292119 7459836089 2708948700 5345953755 0803128538 7835369062 4000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=297)
- 87869410 0496718043 5176833022 8241833181 0487718418 3430924024 9132277574 9527474899 9746716876 3400466618 3037093927 8581095498 2875161446 3963730408 0094756212 6272731545 6000000000 0000000001 (Phil Carmody, k=1)
- 92444637 3305873209 4668694124 4076511289 8288791143 3863337151 7062187194 8242187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)