Known 173-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 173-digit prime factors of googolduplex − 1

This is a list of known 173-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 115 1805451748 7629962918 8052758605 5635442368 5934042633 8233141947 1998195777 7939410503 6185397942 2692081935 3310321275 7850997149 9443054199 2187500000 0000000000 0000000000 0000000001 (Phil Carmody, k=723)
  2. 115 3286006901 9424321169 5933424567 4060501265 1304240753 0877826986 1143171254 8108062167 5659001963 1124365236 1857803137 6878415023 6493983952 3961605124 3675290732 9601536000 0000000001 (Phil Carmody, k=21)
  3. 126 4516704461 3839948916 7381572812 1245687939 2406841411 6144614689 6125266803 0759899152 4857758805 9145006965 6556109976 0088836774 2300033569 3359375000 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
  4. 135 1507039338 2137876370 6171981914 9289649920 0747157132 5247453499 3527153814 2314135352 6162892925 5223865511 1552113051 9779392605 8391387444 2142506005 1181981327 6876800000 0000000001 (Phil Carmody, k=63)
  5. 135 7395207483 4615348707 9897173078 9599978748 7543023045 8090768106 1601003058 1739680131 0824796454 4296282698 7383373467 1109141345 3686982393 2647705078 1250000000 0000000000 0000000001 (Phil Carmody, k=349)
  6. 170 3528260067 8286497249 7767473751 0627391346 9391109017 0378474265 4329623331 5157763827 9576027511 0383356783 0371600146 8635453172 1722567065 6000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 216 8404344971 0088680149 0560173988 3422851562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 219 5504818343 1168000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  9. 221 1840000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  10. 346 0430711805 8198967184 0656683178 8776273857 2556571025 5949527404 0866989235 4423058784 1604399293 2557635873 6166912000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=943)
  11. 517 6309760092 9228405760 6689670776 9089338331 7291277899 1637189316 7849472000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 589 6816288783 6583628774 2903279417 0142057689 4069006881 6933782234 4133787753 7377325813 8457300809 0091824283 5443359855 6850765589 1538484257 4884883772 4101786358 7568202180 1984000001 (Phil Carmody, k=1)