Known 162-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 162-digit prime factors of googolduplex − 1
This is a list of known
162-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10 5097384824 3612803192 7971874674 3709846019 6456407386 8288178012 1291734331 2014395451 1149786412 7159118652 3437500000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 11 5792089237 3161954235 7098500868 7907853269 9846656405 6403945758 4007913129 6399360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 11 7695657538 5002643219 2105168514 3745301919 1645837006 4711680000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 13 9026469255 6823550912 1024000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 16 0333005544 2293610037 5883372217 7021463248 0006072729 1830812630 1446359092 5057831622 4937892145 3340947638 7687111823 9544415191 0208030888 2463333310 6343936000 0000000001 (Phil Carmody, k=321)
- 22 1633295805 8005303029 2883849319 1698625399 5800240776 4210677428 1890146224 7014400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 26 7361714176 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=249)
- 27 9106070129 5130459709 4034222899 3741191798 2825039301 3514809223 6485365486 6355448025 5725736347 4085209175 3328082968 0621232647 7287025388 0279040000 0000000000 0000000001 (Phil Carmody, k=3)
- 29 9208984553 8705765182 4396076046 5567332324 2700850969 8563473235 3038490949 7023069430 8042708437 3032328147 3753313013 9238400000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=243)
- 32 0731765211 0634775368 6437605817 7825457823 6256126058 4375543249 9059247836 9184556430 4045979042 7121333777 9045104980 4687500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 32 2265625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 40 5460742743 9434065171 0744491029 5570485235 2410955716 5006014660 5608398651 4485334364 9071417838 6639360723 9722799285 9455869556 4842309977 3935973644 2565917968 7500000001 (Phil Carmody, k=427)
- 45 4274202684 7543065933 2737993000 2833971025 8504295737 8767593137 4487899555 0708737020 7886940669 6102228475 4765760039 1636120845 9126017884 1600000000 0000000000 0000000001 (Phil Carmody, k=1)
- 53 4389709038 6001243165 3448135819 7762231393 9638556876 2043404872 9295082601 5259309189 1730598608 1876668378 4398921185 3619200000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
- 54 6812681195 7529810931 2555677940 5341338292 3577233031 0910644265 1602488249 7998439808 0587829425 5763456000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 55 8212140259 0260919418 8068445798 7482383596 5650078602 7029618447 2970730973 2710896051 1451472694 8170418350 6656165936 1242465295 4574050776 0558080000 0000000000 0000000001 (Phil Carmody, k=3)
- 63 4219430279 8774873150 5550376034 7335741974 3964208438 0296238770 2568625923 0534056950 0863358038 8143930447 9842950497 1476375803 5843455765 2949040824 0222044160 0000000001 (Phil Carmody, k=31)
- 65 1686574636 0110394900 4800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 78 0625564189 5631924853 6601662635 8032226562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)