Known 161-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 161-digit prime factors of googolduplex − 1
This is a list of known
161-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 0079864058 3011153808 3191580668 0756687295 0571493206 5049693754 5881337427 9998242855 0720214843 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=343)
- 1 0855508365 9983933209 5977984456 4491361244 0610624038 0287869914 8500741855 9037440000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 1356855067 1188576648 3318449825 0070849275 6462607393 4469189828 4362197488 8767718425 5197173516 7402555711 8869144000 9790903021 1478150447 1040000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 1629419588 7297102487 8918092620 8072549658 2617709970 8896450384 3186890228 6098143667 7321905681 1420217048 9722003457 0025884693 6553626057 8344960000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 3937965749 0816394634 5982392040 5225941237 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 9523036188 0909518832 7466619786 7560960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
- 2 1827872842 5502777099 6093750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 7021597764 2229760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 8246094910 4294622992 0590003095 7322240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 2 9436983662 0604225468 2714811989 5837187894 1491200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 3 0587364693 7430837189 5450363714 0066667349 2074596982 8069261860 8385014327 7090507166 9010732559 4627507570 0668821809 8133802413 9404296875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3 3285996544 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 4 0745362639 4271850585 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 4 9465400630 6710549573 1023978578 3778643235 5642318725 5859375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=299)
- 5 0487097934 1447555463 5062817809 8318699085 2118469774 7230529785 1562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6 3616000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=497)
- 6 5536000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 9 3536104789 1777867650 3582929384 2113257979 6827504640 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 9 5900115465 7072813480 4266689924 6068912596 9349426679 1375439330 1799691419 8165431998 5009580348 6110473354 0298833240 4961145534 8161812867 7361246092 3420672000 0000000001 (Phil Carmody, k=3)