Known 159-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 159-digit prime factors of googolduplex − 1
This is a list of known
159-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 116890546 7210934467 9142850509 3790590763 0920410156 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 119265851 9144356812 8627811455 8948545088 8680842056 0978096064 1311528150 5235291340 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=103)
- 127866820 6209430417 9739022253 2328091883 4625799235 5721833919 1069066255 2264220575 9980012773 7981480631 1387065110 9873281527 3797549083 8236481661 4564560896 0000000001 (Phil Carmody, k=1)
- 167772160 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 177450860 4237321510 1301850778 5157357019 9319728240 5226081091 0693159335 7636995600 3987455836 1990664932 9982330375 0152982859 7054346100 7360000000 0000000000 0000000001 (Phil Carmody, k=1)
- 177493703 6747276562 1763892718 8626901676 4714478995 3017607331 2759399414 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 182763170 9617088235 8148729009 4385053094 7262725743 4740204783 9110638645 4166883011 3314307960 3450963140 6473216000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 204169420 1525630780 7802476445 9060926873 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 210194769 6487225606 3855943749 3487419692 0392912814 7736576356 0242583468 6624028790 9022299572 8254318237 3046875000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 221669407 2733943940 2686503963 0124713369 4453350400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=497)
- 223974474 2177804210 5574422805 6844427812 1645497234 6495348999 8910096379 1871180160 9453808774 9327160711 5776000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 246241688 7283325195 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=661)
- 355271367 8800500929 3556213378 9062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 383693077 3104541003 7040710449 2187500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 448415508 5839414626 9559346665 2773162009 6838214004 8504696226 1850844733 1464594753 9247572422 0275878906 2500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 534986441 6762705084 2542358063 3045796179 9870846347 8948517189 9765882880 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
- 681133904 5868437850 9601152706 1885822601 5847441320 4743380645 9462752871 2471083657 1113007349 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=107)
- 891289600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)