Known 158-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 158-digit prime factors of googolduplex − 1

This is a list of known 158-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10490412 0180189369 8296509429 6847002095 8689969308 8155341475 9787012590 0831401081 2589015040 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  2. 10576895 5006439775 8323064492 8524336637 2544749274 2849950855 4380724390 4926597809 8153320302 7367035444 5575614593 9240037373 2868096000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 11998618 1007812461 6978443455 6919906874 0872428773 1766629566 9897180806 3361454976 8140022933 9487850666 0461425781 2500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=137)
  4. 14373080 6065758593 5468362125 2350742607 5391771993 1891760872 8620745777 1192337014 0367399783 7870114784 4625554420 5312000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=153)
  5. 21577525 9797841383 0330960005 2330365505 3343103621 0028059473 8492904930 5694587222 1996627155 5784374856 5046567237 4791116257 7453336407 8952406280 3707769651 2000000001 (Phil Carmody, k=27)
  6. 22414360 5760000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=167)
  7. 28734291 3912354160 9421900675 9068297192 8513585409 4254080000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 34602917 7826277694 4753860901 8105684618 8867347006 9019085812 7585166070 4739214142 0777553888 0588179661 9346554423 1279831657 6425597489 6435200000 0000000000 0000000001 (Phil Carmody, k=39)
  9. 45728738 5300194174 5187886567 0798334556 8642306054 4391334266 3432025762 2813303676 6045098104 6431594120 6712865273 1134872982 7570038706 2395744917 9136000000 0000000001 (Phil Carmody, k=3)
  10. 46672614 5839585628 0358048040 3350931804 4268912654 0875349825 8374610922 7412552653 7580887958 6173442852 1271772494 2166341861 5935370326 0421752929 6875000000 0000000001 (Phil Carmody, k=3)
  11. 48961521 1890739622 9165890545 2428841576 4518550796 0284123238 0115577712 0736892623 0753876451 9491946351 3754796737 3259521529 9157054289 4805839750 9157657623 2910156251 (Phil Carmody, k=33)
  12. 50634016 1978356433 6335014158 5847109864 6528000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  13. 57291636 8344074211 7630003498 6513760779 5725485718 5445704914 1450138091 9740558438 4486140805 1200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  14. 72477421 8952245252 0999108438 6107174894 4363520000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  15. 77133026 1244315332 2601418043 2375804921 0657437015 7405609446 6048000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  16. 77884452 8780224144 2795744493 8301440000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 87112285 9317602466 4662389950 2532662132 7360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)