Known 156-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 156-digit prime factors of googolduplex − 1
This is a list of known
156-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 112570 3895813050 8329888361 5876209198 3595193452 6025815295 1921470972 9536250969 0840029542 2960887828 0668707540 8316503298 5016256350 8076544000 0000000000 0000000001 (Phil Carmody, k=203)
- 115792 0892373161 9542357098 5008687907 8532699846 6564056403 9457584007 9131296399 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 155096 3648536926 8903838912 9763118035 0435897707 9391479492 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 190538 8904655569 1617994058 7990291188 6264739963 3561382319 4552184499 7159187422 4659783490 8566904132 9538231366 3139939308 1665039062 5000000000 0000000000 0000000001 (Phil Carmody, k=73)
- 289480 2230932904 8855892746 2521719769 6331749616 6410141009 8643960019 7828240998 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 335820 4235798300 9691223541 9769925269 4019716935 0872873861 0184578939 1917535198 8750643689 2059732019 3236797604 3494271723 4671217471 7489468751 7409280000 0000000001 (Phil Carmody, k=141)
- 476449 6072112436 6195321740 4117540762 1701911816 6771435862 8054240819 8363169808 3404471564 5775520562 4487982677 5451281406 5037673572 0783472061 1572265625 0000000001 (Phil Carmody, k=49)
- 492131 4130761776 8298381300 1101464807 2044631219 5097279819 5798386442 2394248198 5958272529 0464830187 1104000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 557518 6299632655 7853839295 6816209037 6495104000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 684227 7657836020 8541197733 5590779360 9766904013 0689246667 8255997993 0620520927 0537181964 7552911192 1787261962 8906250000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 828209 5616148676 5449217070 3473243054 2941330766 6044638661 9502906855 9155200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 836649 3961506314 0498782411 5548160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 852651 2829121202 2304534912 1093750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 872437 2135009165 0982054664 8719635464 0060408429 1678370736 9776657003 5128097515 5532360076 9042968750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 935361 0478917778 6765035829 2938421132 5797968275 0464000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)