Known 152-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 152-digit prime factors of googolduplex − 1

This is a list of known 152-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10 8086391056 8919040000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 10 8454494879 6501607655 4860522412 6498721847 6432988273 8753888769 2974707200 1247073301 7444510483 7765788920 3079332228 5539472179 2000000000 0000000000 0000000001 (Phil Carmody, k=21)
  3. 14 1642535230 8406354166 2968034347 3518018560 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=333)
  4. 16 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 30 5669085732 4860079798 2524324147 8460731741 5066063404 0832519531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=473)
  6. 40 6379497626 0096000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=231)
  7. 44 6330825611 0990776269 8411707314 7852809959 6352519173 1186669073 3554129069 9304680579 4204609507 6804590462 4159447848 7968444824 2187500000 0000000000 0000000001 (Phil Carmody, k=171)
  8. 47 0001641772 4661721422 3078917711 9731903076 1718750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=867)
  9. 49 0224000293 0615525674 9090530994 6785517280 0841074229 0126394548 7218263571 9922596955 4297173503 6776166436 6597428042 0128194560 0000000000 0000000000 0000000001 (Phil Carmody, k=243)
  10. 53 2352581271 1964530390 5552335547 2071059795 9184721567 8243273207 9478007291 0986801196 2367508597 1994798994 6991125045 8948579116 3038302208 0000000000 0000000001 (Phil Carmody, k=3)
  11. 58 4600654932 3611672814 7393308651 3207862373 0171904000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  12. 67 3998666678 7659948666 7537717549 0766840928 6105635143 1202759025 6230400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 83 4369935906 6055009355 5535397248 1294766681 4540455674 8826056312 8055554580 3830627148 5271956520 9600000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 85 5664155154 0548460102 7466362880 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)