Known 149-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 149-digit prime factors of googolduplex − 1

This is a list of known 149-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 116560133 5335437442 5516771440 9411134398 5444103431 2837127510 8744584334 2571123125 0989056000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 139333260 7812788483 0076168508 7201466215 9204381267 5003954351 2006735839 6809038122 3070294438 0518400000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=171)
  3. 233840261 9729444669 1258957323 4605283144 9492068761 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 258224987 8086908589 6559191720 0301187432 9705792829 2235128306 5935654064 7622016841 1946296453 5328013783 1435903171 9727474933 7600000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 296867520 0828396552 6012348164 5494988367 6112977920 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  6. 318145751 9531250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=417)
  7. 321930319 2513366988 6122721432 2420275280 3241834623 2514993235 0561461366 4605657883 2957490656 6878422609 5258571522 7189505798 6093072491 9266044222 1117440001 (Phil Carmody, k=33)
  8. 392318858 4616675477 3973683895 0479151006 3972152790 0215705600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 394921093 7570894501 1719260381 3764121195 8566077520 5916720366 6165760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 411376139 3303015105 3874229563 9337626245 6839664083 9496583715 2256000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 549316406 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  12. 582334848 0104538195 6480752587 9624022550 5623195268 7636559183 7981383065 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  13. 587135645 6934583069 7237014919 7334256843 9206372270 7996767682 2742883052 2562786521 1086592474 9596192175 7579837440 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 686645507 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  15. 740477050 7945427189 6973613215 0807727242 2311395351 1093850687 4060800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  16. 784727140 0218975597 1728856664 2353033516 9466874508 4883218395 8238978283 0063040819 3683251738 5482788085 9375000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)