Known 144-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 144-digit prime factors of googolduplex − 1
This is a list of known
144-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1104 2794154864 9020598956 0937964324 0723921774 3554726184 8826003875 8078873600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1751 6230804060 2133865466 1979112395 1641003274 2734564471 4696335354 8622388533 5732575185 8297735452 6519775390 6250000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2327 6465390548 1733175975 0231867656 1117172241 2109375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=687)
- 3064 3753779750 1032162103 1602850999 3008882923 8364365163 0492160755 3668874240 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 3335 1922298138 0758508151 9846426090 2255773544 3115234375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 3611 1186457260 6722447995 8642346738 7222589405 9040385286 6074885241 6872978210 4492187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3757 3499866994 0978288650 5126953125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=661)
- 3913 4513352382 7170579533 8623554004 5557841557 2314854481 8165120868 0244822841 1896316728 5120125803 1144862977 3997518813 8281161195 5200000000 0000000001 (Phil Carmody, k=37)
- 4294 9672960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4458 5636310967 9104000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
- 5293 9559203393 7711917701 5629247762 2628211975 0976562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 5708 9907708238 3952423314 3877797980 5455309864 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6035 1097491868 8991586179 7817342448 9796161651 6113281250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
- 6346 1373003863 8654993838 6957114601 9823526849 5645709970 5132628434 6342955958 6858891992 1816420221 2667345368 7563544022 4239720857 6000000000 0000000001 (Phil Carmody, k=3)
- 6470 3872001161 5355072008 3620884711 3616729146 6140973739 5464866459 8118400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 6821 2102632969 6178436279 2968750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8749 0028991320 4769749000 8908470485 4614126777 2357284974 5703082425 6398119967 9750369289 4052708092 2152960000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)