Known 142-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 142-digit prime factors of googolduplex − 1

This is a list of known 142-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11 2973432166 3022507974 4646377513 1769501924 6284362785 2868634134 6848653333 4632368022 6504698420 6006030125 3207637738 0770283520 0000000000 0000000001 (Phil Carmody, k=7)
  2. 11 6322273640 2695167787 9184732233 8526282692 3280954360 9619140625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 12 1799276326 1738893516 4723200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=403)
  4. 15 3282530792 7934756600 2495607640 2905283950 1137169963 2754471800 4097209506 1838922646 9950380344 5775611985 9200000000 0000000000 0000000000 0000000001 (Phil Carmody, k=219)
  5. 15 6117244875 8494232494 5270119512 8629160237 0652519858 8953519928 1152000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=759)
  6. 16 5244789228 4248361922 0290747378 6763930569 1214168803 0715158674 8659610748 2910156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
  7. 24 1040706638 8485413312 9431385117 4390378330 4490674189 2529520640 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 25 0571691571 1433418256 7529379545 1426138924 7075098483 1543393163 9890037372 5925434711 2535921127 1188542013 9878988265 9912109375 0000000000 0000000001 (Phil Carmody, k=3)
  9. 25 8145808867 7772464127 4684002941 5281362209 3676535834 1934284800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=329)
  10. 29 6868139499 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  11. 44 7895730921 3204275493 6591643832 9843762267 1678579694 0588382717 2027679113 2160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=507)
  12. 53 9383071935 5451681351 8906102679 8164511814 2840381889 5553536394 1130610965 2172800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=477)
  13. 57 3374653997 5178779027 0522382552 1735199141 2472920702 8093439720 9846730719 0221212020 1750463827 7531421638 6560000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 65 9706976665 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  15. 81 2017254400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=121)