Known 138-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 138-digit prime factors of googolduplex − 1
This is a list of known
138-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 11823431 1230480670 9289550781 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 11832913 5783151770 8117592847 9241793445 0980965266 3534507155 4183959960 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 16318418 6946961241 9572348001 7317558815 7962174480 3797197851 5224241806 7959957237 5138467840 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 16526399 2197562149 7379788270 0819275995 7101170741 0703048211 6219881860 1447809077 8364562973 0260992882 1211897803 0062558395 7606400000 0000000001 (Phil Carmody, k=1)
- 17210643 2812087127 6476659259 0066948839 4682616260 8537600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 19351394 5724162283 7921630130 4111358562 9710170961 0737198153 5905832327 1617669965 9056809078 1541866685 4803046400 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 23520329 4488113216 8603672091 0933040533 5737325449 2442854206 5049931011 5080406867 4715630038 4631322231 1437129974 3652343750 0000000000 0000000001 (Phil Carmody, k=11)
- 23822801 6415271970 3629657033 1614930182 6953887939 4531250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 25489470 5781192364 3246208636 4283388889 4576728830 8190057718 2173654178 6064242089 3057508943 7995522922 9750557351 5081778168 6782836914 0625000001 (Phil Carmody, k=1)
- 28557617 8517387394 7472274130 7015708920 5870823040 5694867309 6827955854 3301814086 5013964817 3890995700 3054159403 5948100907 8743859200 0000000001 (Phil Carmody, k=27)
- 32040000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=801)
- 33306690 7387546962 1270895004 2724609375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 37057691 4423756398 3423910940 4734335839 7483825683 5937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 46126783 7508280477 7368809612 5447649355 6760517854 4051072938 8208160768 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=219)
- 60805397 1545974509 4969720462 7696212743 0457290223 8985787863 4077946649 0690824572 1565975383 5268475086 1953943967 8192138671 8750000000 0000000001 (Phil Carmody, k=91)
- 72370055 7733226221 3973186563 0429942408 2937404160 2535252466 0990004945 7060249600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 73746443 8981918720 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=131)
- 87620055 1122848752 3658842187 7224149307 5107505355 9403323406 3721936238 9595832181 9885186994 3109610047 7267540895 8093612454 8316001892 0898437501 (Phil Carmody, k=11)
- 88800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 89432501 5520275693 1803142112 5737954002 4659914624 2882067653 3640195946 5196763642 8952709765 7858491992 2114560838 8608000000 0000000000 0000000001 (Phil Carmody, k=119)
- 90728601 7429056365 2562819469 9337343265 5091472132 9394108153 6745333880 0281074927 3230328526 5516024082 8990936279 2968750000 0000000000 0000000001 (Phil Carmody, k=663)